MOLD CLEAN-UP AFTER A HURRICANE IS NOT A DIY PROJECT

Hidden mold on underside of sub-floor after a flood

Hidden mold on underside of sub-floor after a flood

http://www.thedoctorstv.com/videolib/init/8286_

The above link provides some good information on the hazards that are inherent to flooded buildings. Good information in the clip includes:
• Chemicals, such as pesticides, gasoline, hydrocarbons, rotted food, and other harmful agents can be transported indoors with flood waters.

• Animal fecal material, carcasses and pathogens are inherent to flood waters.

• Fungi (mold) grow indoors on drywall, wood, and other cellulose contents.

• Mold that grows indoors can make people sick.

• Moldy drywall must be discarded.

The overall message that water damage to buildings is unhealthy was very clear in the news clip. However, due to the shortness of the clip, information was limited. The public should be aware of that many hazards exist after floods. As reported by the World Health Organization (Dampness and Mould, 2009), other harmful agents in water damaged buildings include bacteria, endotoxins and exotoxins from bacteria, mycotoxins from mold, chemicals released from wet building materials, insects, and other contaminants that can be transported indoors with surface and ground water.

The media clip does fall short relative to its discussion about clean-up. The recommendations from the interviewed mold expert do not emphasize that flood clean-up is not a do-it-yourself project. Although the reporter and expert donned protective gear prior to entering a flooded house, the importance of hazard training and medical clearance for using personal protective equipment is not addressed. This could turn into a situation where a little knowledge could be dangerous.

The issue of restoring wood after a flood was misrepresented in the clip. The expert suggested that unless wood was rotted, abrasive cleaning would effectively restore mold contaminated wood after a flood. This is information is not correct. Wood that has been in contact with the flood water is contaminated with the same chemical and biological agents as the drywall that the expert states must be removed. Abrasively cleaning of wood will only address the outer accessible surfaces. Wood has six sides. Ignoring the surfaces that cannot be accessed for cleaning (interface between bottom plates and flooring, stacked studs, etc.) are typically the most contaminated because they remain wet for the longest periods.

The surfaces with trapped contaminants can cause exposure hazards long after restoration and re-build are complete. Contaminants that remain on wood in floor, ceiling, and wall cavities can be liberated with pressure differentials, physical disturbances, and normal living activities. Since people can react to dead mold and other contaminants that remain after a flood, failure to address the “hidden” surfaces could be quite dangerous, especially to people to young children, elderly people, asthmatics, or those that are immune-compromised. Appropriate remediation scopes for damages from catastrophic water losses, such as those caused by Hurricane Sandy, are paramount to preventing future indoor air quality problems.

MOLD TEST KITS: Why You Should Not Do-It-Yourself

Using a “do-it-yourself” (DIY) mold test kit to evaluate whether a home has a mold problem makes about as much sense as replacing an annual doctor exam with using a thermometer to take your temperature.  Just as a person could be very ill while maintaining a normal temperature, a home could have a serious mold problem, even though a DIY test was negative.

Designing, executing, and understanding a comprehensive indoor mold assessment is difficult enough for professional mold consultants.  The best ones understand that building dynamics, hidden mold, historical damage, sampling techniques, analytical methods, and many other factors can influence the accuracy and effectiveness of diagnosing indoor mold problems.

Unlike chemical testing, no dose response curves have been developed for mold exposure.  Therefore, sample results will often raise more questions than answers.  Mold spores are always present in indoor environments. They enter buildings through doors and windows, and usually are not a problem unless they have suitable nutrients for growth.  All building materials can support mold growth IF sufficient moisture is present.  Moisture can come from leaks, floods, or excess humidity.

When sufficient moisture is present, certain molds that are usually minor constituents of outdoor air grow disproportionately to predominant outdoor molds that grow on decayed vegetation.  The molds that grow indoors on wet drywall, wood, and other cellulose materials are most frequently in the genera, Aspergillus, Penicillium, Stachybotrys, and Chaetomium.  These molds can present health problems when they grow indoors.  In addition to allergic reactions, triggering of asthma, and infections, many molds that grow indoors produce secondary metabolites, such as toxins.   The tightness of indoor environments can promote exposures and adverse health to occupants of water damaged buildings.

The single best tool in a mold assessment, whether it is performed by a professional or a do-it-yourselfer, is a detailed visual inspection.  The simplest inspection involves observations of mold growth after a water damage event.  If you see it, yes it is there, and must be addressed to prevent air quality problems.  More involved inspection that require professionals are those in which prior unmitigated water damage has been concealed or construction defects result in hidden water damage in ceiling, wall, or floor cavities.

For the do-it-yourself mold tester, the best that can be expected from a home test kit is to identify the type of mold is visibly growing on a surface.  However, if it is growing, the source of moisture must be corrected and the mold must be removed under controlled conditions.  Since remediation procedures are not dictated by the type of, testing is usually a waste of money.  If the area of growth is small and a low likelihood exists for hidden mold, addressing the mold according to EPA guidelines found in A Brief Guide to Moisture, Mold and Your Home (epa.gov) is sufficient.  If the mold covers a large area or hidden mold is suspected, a professional remediator is usually required to avoid hazardous exposures and cross-contamination to unaffected areas.

The worst outcome from a do-it-yourself mold test kit is that negative results will give a false sense of security when in fact hidden mold problems do exist.   False negative are common in culture plate kits (petri dishes) that instruct the user to place the open plate in a room for a specified period of time to collect mold that settles from the air.  The lab reports for settling plates might list several types of mold that grew the petri dish.  However, the data is usually inconclusive at best.  One problem with “settling plate” is that all molds do not settle at the ratio in which they are found in the air.  Therefore, many species can go undetected.  Another issue is that the actual concentrations of mold spores per volume of air cannot be calculated because the sampling method cannot quantify the amount of air to which the culture plate is exposed.  Additionally, the methodology does not address whether the molds entered from outdoors or were from areas of actual indoor mold sources.

Another type of test that might be recommended for the culture plates is to tape the open culture plate to a supply register to allow the air from an operating HVAC system to impact the plate for a specified time.  Unfortunately air exiting from the airducts does not necessarily represent air within the home because the air that passes through a filter before impacting the culture plate.  Additionally, the likelihood that contaminants would actually be released from an area of growth, enter the air stream, be sucked into the return ducts, pass through the filter, and ultimately end up on the culture plate is very low. 

Swab type test kits are commonly available for DIYers.  Directions generally instruct the user to wipe the swab over a small area (usually 1 sq. inch) of suspect mold growth.   The resultant lab report might list several molds that were found in the swab sample, but this method cannot differentiate between settled spores and what might have actually been growing on the surface.   In either case, the results should not be mistaken to represent the moldiness of the whole house.

Still another type of surface sample that can be found in home mold test kits is a tape lift sample, which involves using clear cellophane tape to “lift” suspect mold from a surface.  This type of sample can be useful in identifying not only the type of mold that is present on a surface, but can also differentiate between actual mold growth and spores that settled from the air.   But the sample would be representative of the tested area only and would not provide information on the overall mold conditions in the indoor environment.

Mold testing can be a useful tool in the hands of a knowledgeable investigator that designs a sampling plan to address a question that cannot otherwise be answered.  Unfortunately, even within the mold assessment and remediation industries, few investigators understand the principles of microbiology, building science, engineering, and scientific methods that are required to conduct a meaningful mold investigation.  With so many variables and limitations in mold testing and analytical methods, “do-it-yourself” mold test kits are generally a waste of time and money.

Connie Morbach To Be Featured In October “Women’s Health” Magazine!

Women's Health | July/August CoverI’m elated to announce I will be featured in the October issue of the nationally published “Women’s Health” magazine. I had the opportunity to speak with Women’s Health writer Kate Bowers giving my views on the importance of indoor air quality: what are the risks of household pollutants and what can people do to improve indoor air quality and more.

I’m excited to declare the CleanliNEST™ Crusade is picking up national steam. Here’s to everyone breathing easier!

Take a moment to check out the free iPhone and iPod Workout App from Women’s Health at the link below. Nice workout tool at an even nicer price!

Click here for the Women’s Health Workout Lite App

From Our Video Archives: Sanit-Air Featured On PBS “The Business Page” Television Program

The nationally recognized Public Broadcasting System affiliate in Detroit, WTVS Channel 56, produced and aired a wonderful local business program titled “The Business Page.” Sanit-Air and our team of environmental IAQ experts and technicians had the distinct pleasure of an extensive feature on “The Business Page.”

Producer Mike Echols narrates this business feature that serves as a nice introduction to the basic understanding of the workings of Sanit-Air and the foundation for our CleaniNEST™ brand and consumer crusade. We hope you find “The Business Page” feature on Sanit-Air informative.

Can This, Not That: How To Preserve Contents After Mold Infestation

There are no simple answers to questions that arise regarding saving personal belongings and furniture after an indoor environment is contaminated with mold.  Generally, from an insurance perspective, only items that are directly impacted by water from a covered water loss are covered for cleaning or replacement.  However, contents that are impacted by spores, mold fragments, mold toxins, and volatile organic compounds that are liberated from areas of actual mold growth must be addressed to prevent cross-contamination when moved to a new environment or returned after a structure is remediated.   Decisions on restorable must be made on a case by case basis, and are dependent on numerous factors, including:

  • The severity of the airborne contamination
  • The effectiveness of capture and containment methods if contents are present during structural remediation
  • The length of time in which the contents were exposed
  • The origin of the water loss, clean water versus sewage or other contaminated water source
  • Humidity control
  • The sensitivity or susceptibility of occupants

The primary objective of remediation, whether for structure or contents, should be protection of health. Financial practicality might be considered for low level contamination, but should not be a major criterion for immune-compromised or other sensitized individuals.  Compared to the devastating emotional and health consequences that many people experience with repeated exposure to contaminated contents, financial concerns are inconsequential.

Some people are unable to salvage any items from a contaminated home, while some individuals experience no adverse health symptoms if all items are saved.  For the majority of the population, a combination of cleaning and discarding proves to be effective.

The following guidelines are designed to address content restoration for healthy individuals in homes with low to moderate contamination.

CONTENT DECISION MAKING

 A.  Separate contents according to porosity.

    1. Hard surfaced items, such as metal, plastic, sealed wood, and glass.
    2. Semi-porous items, such as unsealed wood, stone, leather.
    3. Porous items, such as cardboard, paper, fabric, and canvas.
    4. Items to Discard
      1. Items that display visible growth
      2. Porous padded items, such as pillows, upholstered furniture that are exposed to a highly contaminated environment or exposed for extended time
      3. Mattresses that are exposed to a highly contaminated environment or exposed for extended time
      4. Books, paper, and stuffed animals that are exposed to a highly contaminated environment or exposed for extended time

B.  Porous, padded items with short exposure to low concentrations of mold

  1. Agitate books, papers, photos, etc. over the inlet of a HEPA-filtered air scrubber.  HEPA-vacuum.
  2. Porous padded items, HEPA-vacuum, agitate/compress, HEPA-vacuum again.

C.   Hard Surfaced Items

  1.   Clean by HEPA-vacuuming and damp-wiping
  2. Use compressed air to clean cracks and crevices
  3. Submerse glass, dishes, pots, pans, or clean in dishwasher

D.  Clothing

  1. Launder washable item with detergent, dry in dryer
  2. Select several representative items (fluffy sweater, wool coat, silk blouse) for dry-cleaning.  Select a dry cleaner that uses special procedures for mold-contaminated items.  The procedures should include filtering of the fluid to remove mold spores.  Once cleaned, items are to be tested using both direct exam and culturable dust sample method.  Test results should demonstrate that target fungi, such as Penicillium, Chaetomium, Aspergillus, and Stachybotrys, are not present. 

E.  Appliances

  1. Items with insulation are not likely salvageable if exposed to high concentrations of mold or if exposed for a long period.   If exposure was short and concentrations were low, the items should be professional cleaned by disassembly, using a combination of compressed air, HEPA-vacuuming and damp-wiping.
  2. Items without insulation should be disassembled and cleaned using compressed air, HEPA-vacuuming and damp-wiping.

F.  Art Work

  1. Remove craft paper backing and discard
  2. Clean by positioning the painting of the inlet of a HEPA-filtered air scrubber.  Starting at the top of the painting, use an art brush to systematically brush toward the bottom.  Repeat with a clean brush.  HEPA-vacuum and damp-wipe the frame.

Making decisions to discard items with high intrinsic or monetary value, such as antiques, memorabilia, and photographs, can be especially troubling when someone is already dealing with the health, emotional, or financial consequences from a mold infestation.  When possible, questionable items should be stored in sealable containers so that decisions can be made at a time when health and stress levels have improved.   

Crawlspaces & Ventilation: 10 Fun Facts & Random Observations

1. Inside the living space of a property, proper ventilation is absolutely crucial to the health, safety, and overall comfort of the occupants inside the home.

2.  Standards and guidelines have been established to specify minimum ventilation rates and other measures intended to provide indoor air quality that is acceptable to human occupants and that minimizes adverse health effects. More info here:  http://eetd.lbl.gov/ie/viaq/v_rates_1.html

3.  Improving the overall air quality inside a property can be achieved by two methods:

•    Exhausting air contaminants from the building
•    Removing contaminants from the air stream using filtration and/or absorption technologies (i.e. HEPA filtration and activated carbon)

Since most residential properties do not have access to proper filtration or absorption technologies, exhaust ventilation is most practical and commonly used.

4. In addition to improper ventilation, excessive or chronic water intrusion into the property, especially the crawlspace, will contribute to the growth of certain microorganisms.  This can lead to mold infestation impacting Indoor Air Quality, and even more destructive structural damage such as wood decay or dry rot.

5. Water intrusion into the crawlspace will often cause damage to flooring systems (i.e. cupping of hardwood floors, grout separation in tile floors, etc.), wood decay, and oxidation or rusting of metal strapping/hardware.

6. Water enters a crawlspace in either liquid or vapor phase by four moisture transfer mechanisms:

•    Liquid water (i.e. plumbing/sewer leaks, high groundwater table, drainage or exterior flooding)
•    Capillary suction or wicking (i.e. moisture being drawn through concrete footing from saturated exterior soils)
•    High moisture laden air (i.e. elevated humidity from atmospheric conditions entering the crawlspace through vents)
•    Vapor diffusion (i.e. moisture in the vapor phase moving through building materials)

7. Most properties are constructed with vents that are intended to remove moisture from the air in a crawlspace by cross-ventilation.   However, the introduction of moist air from outdoors can actually increase the relative humidity in a crawlspace.

8. Due to stack effect and vapor diffusion, which is a very powerful force, moisture in a crawlspace will seek dry areas.  When moist air comes in contact with  a surface that is colder than the  air, condensation will occur.  Condensation can develop on uninsulated plumbing pipes in the crawlspace, on the underside of a sub-floor, or even the attic roof deck.  Interestingly, many houses with exposed wet soil in a crawlspace also have mold and water damage due to condensation on the underside of the roof deck. 

9. If vapor diffusion from the soil, water intrusion from poor drainage, unmitigated plumbing leaks, or infiltration of moist air exist in a crawlspace, one or more of the following is usually observed:

  •   Surface mold growth, structural damage, and health issues
  •   Termite or other pest infiltration
  •   Accumulation of odors  
  •   Termite or other pest infestation

10.  The best way to mitigate crawlspace moisture is to treat the crawlspace as a conditioned space by (1) insulating walls with foam panels, (2) seal the crawlspace floor and walls with heavy gauge polyethylene or vinyl encapsulation system, with the seams sealed tightly at all edges and overlaps, (3) seal the rim joists with two-part closed cell foam.

Creepy Crawlspace: A Major Source of Contamination In 9 out of 10 Homes

What can you expect to find in a typical crawlspace? It has been determined, after reviewing thousands of air samples collected from properties with occupants that suffer from poor indoor air quality, that the source of contamination in 9 out of 10 homes comes from a poorly ventilated crawlspace. Common environmental contaminants found in crawlspaces include mold contamination, radon gas, pathogenic bacteria, fiberglass, pesticides, foul odors, asbestos fibers, raw sewage, and/or rodent excretions. Although some of these contaminants are classified as allergens, some are classified as carcinogens, which is why evaluating these air contaminants is important and significant.

If it’s in your crawlspace, it’s in your home! Studies have shown that approximately 40%-50% of the air inside the home generates from the crawlspace. Contaminated crawlspace air will enter the home through pressurization differentials or a condition known as the “Stacking Effect.” Inside a house, warm air rises (especially in multi-story properties) which then reduces the pressure in the base of the house (i.e. crawlspace or basement). This reduction in pressure then forces cooler air from the crawlspace to infiltrate the home through plumbing and electrical penetrations, through cracks or seams in flooring, and up into wall cavities.

During property inspections, crawlspaces are often the most overlooked and under-inspected areas of a property, yet they continue to be the source of more damage than any other area of the house. Crawlspaces are a major source of indoor air quality (IAQ) problems and should be one of the first places you and/or your IAQ Specialist inspect when trying to determine any suspect indoor air quality issues.

%d bloggers like this: